Optica Open
Browse

422 Million Q Planar Integrated All-Waveguide Resonator with a 3.4 Billion Absorption Limited Q and Sub-MHz Linewidth

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:34 authored by Matthew W. Puckett, Kaikai Liu, Nitesh Chauhan, Qiancheng Zhao, Naijun Jin, Haotian Cheng, Jianfeng Wu, Ryan O. Behunin, Peter T. Rakich, Karl D. Nelson, Daniel J. Blumenthal
High Q optical resonators are a key component for ultra-narrow linewidth lasers, frequency stabilization, precision spectroscopy and quantum applications. Integration of these resonators in a photonic waveguide wafer-scale platform is key to reducing their cost, size and power as well as sensitivity to environmental disturbances. However, to date, the intrinsic Q of integrated all-waveguide resonators has been relegated to below 150 Million. Here, we report an all-waveguide Si3N4 resonator with an intrinsic Q of 422 Million and a 3.4 Billion absorption loss limited Q. The resonator has a 453 kHz intrinsic linewidth and 906 kHz loaded linewidth, with a finesse of 3005. The corresponding linear loss of 0.060 dB/m is the lowest reported to date for an all-waveguide design with deposited upper cladding oxide. These are the highest intrinsic and absorption loss limited Q factors and lowest linewidth reported to date for a photonic integrated all-waveguide resonator. This level of performance is achieved through a careful reduction of scattering and absorption loss components. We quantify, simulate and measure the various loss contributions including scattering and absorption including surface-state dangling bonds that we believe are responsible in part for absorption. In addition to the ultra-high Q and narrow linewidth, the resonator has a large optical mode area and volume, both critical for ultra-low laser linewidths and ultra-stable, ultra-low frequency noise reference cavities. These results demonstrate the performance of bulk optic and etched resonators can be realized in a photonic integrated solution, paving the way towards photonic integration compatible Billion Q cavities for precision scientific systems and applications such as nonlinear optics, atomic clocks, quantum photonics and high-capacity fiber communications systems on-chip.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC