Optica Open
Browse

60-nm-span wavelength-tunable vortex fiber laser with intracavity plasmon metasurfaces

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:50 authored by Lili Gui, Chuanshuo Wang, Fei Ding, Hao Chen, Xiaosheng Xiao, Sergey I. Bozhevolnyi, Xiaoguang Zhang, Kun Xu
Wavelength-tunable vortex fiber lasers that could generate beams carrying orbital angular momentum (OAM) hold great interest in large-capacity optical communications. The wavelength tunability of conventional vortex fiber lasers is however limited by the range of 35 nm due to narrow bandwidth and/or insertion loss of mode conversion components. Optical metasurfaces apart from being compact planar components can flexibly manipulate light with high efficiency in a broad wavelength range. Here, we propose and demonstrate for the first time, to the best of our knowledge, a metasurface-assisted vortex fiber laser that can directly generate OAM beams with changeable topological charges. Due to the designed broadband gap-surface plasmon metasurface, combined with an intracavity tunable filter, the laser enables OAM beam with center wavelength continuously tunable from 1015 nm to 1075 nm, nearly twice of other vortex fiber lasers ever reported. The metasurface can be designed at will to satisfy requirements for either low pump threshold or high slope efficiency of the laser. Furthermore, the cavity-metasurface configuration can be extended to generate higher-order OAM beams or more complex structured beams in different wavelength regions, which greatly broadens the possibilities for developing low-cost and high-quality structured-beam laser sources.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC