posted on 2023-11-30, 05:24authored byFabien Defrance, Cecile Jung-Kubiak, Jack Sayers, Jake Connors, Clare deYoung, Matthew I. Hollister, Hiroshige Yoshida, Goutam Chattopadhyay, Sunil R. Golwala, Simon J. E. Radford
Although high-resistivity, low-loss silicon is an excellent material for THz transmission optics, its high refractive index necessitates antireflection treatment. We fabricated a wide-bandwidth, two-layer antireflection treatment by cutting subwavelength structures into the silicon surface using multi-depth deep reactive ion etching (DRIE). A wafer with this treatment on both sides has <-20 dB (<1%) reflectance over 190-310 GHz. We also demonstrated that bonding wafers introduces no reflection features above the -20 dB level, reproducing previous work. Together these developments immediately enable construction of wide-bandwidth silicon vacuum windows and represent two important steps toward gradient-index silicon optics with integral broadband antireflection treatment.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.