Optica Open
Browse
- No file added yet -

A Convergent Numerical Method for the Reflector Antenna Problem via Optimal Transport on the Sphere

Download (5.58 kB)
preprint
posted on 2023-01-12, 13:41 authored by Brittany Froese Hamfeldt, Axel G R Turnquist
We consider a PDE approach to numerically solving the reflector antenna problem by solving an Optimal Transport problem on the unit sphere with cost function $c(x,y) = -2\log \left\Vert x - y \right\Vert$. At each point on the sphere, we replace the surface PDE with a generalized Monge-Amp\`ere type equation posed on the local tangent plane. We then utilize a provably convergent finite difference scheme to approximate the solution and construct the reflector. The method is easily adapted to take into account highly nonsmooth data and solutions, which makes it particularly well adapted to real-world optics problems. Computational examples demonstrate the success of this method in computing reflectors for a range of challenging problems including discontinuous intensities and intensities supported on complicated geometries.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC