arXiv.svg (5.58 kB)
Download fileA Dirac-material-inspired non-linear electrodynamic model
preprint
posted on 2023-03-08, 17:01 authored by M. J. Neves, Patricio Gaete, L. P. R. Ospedal, J. A. Helayël-NetoWe propose and study the properties of a non-linear electrodynamics that emerges inspired on the physics of Dirac materials. This new electrodynamic model is an extension of the one-loop corrected non-linear effective Lagrangian computed in the work of ref. [3]. In the particular regime of a strong magnetic and a weak electric field, it reduces to the photonic non-linear model worked out by the authors of ref. [3]. We pursue our investigation of the proposed model by analyzing properties of the permittivity and permeability tensors, the energy-momentum tensor and wave propagation effects in presence of a uniform magnetic background. It is shown that the electrodynamics here presented exhibits the vacuum birefringence phenomenon. Subsequently, we calculate the lowest-order modifications to the interaction energy, considering still the presence of a uniform external magnetic field. Our analysis is carried out within the framework of the gauge-invariant but path-dependent variables formalism. The calculation reveals a screened Coulomb-like potential with an effective electric charge that runs with the external magnetic field but, as expected for Dirac-type materials, the screening disappears whenever the external magnetic field is switched off.