Optica Open
Browse

A Knotted Meta-molecule with 2-D Isotropic Optical Activity Rotating the Incident Polarization by 90{\deg}

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:48 authored by Wending Mai, Lei Kang, Chunxu Mao, Ronald Jenkins, Danny Zhu, Pingjuan Werner, Douglas H. Werner, Jun Hu, Weiping Cao, Yifan Chen
Optical activity is the ability of chiral materials to rotate linearly-polarized (LP) electromagnetic waves. Because of their intrinsic asymmetry, traditional chiral molecules usually lack isotropic performance, or at best only possess a weak form of chirality. Here we introduce a knotted chiral meta-molecule that exhibits optical activity corresponding to a 90{\deg} polarization rotation of the incident waves. More importantly, arising from the continuous multi-fold rotational symmetry of the chiral torus knot structure, the observed polarization rotation behavior is found to be independent of how the incident wave is polarized. In other words, the proposed chiral knot structure possesses two-dimensional (2-D) isotropic optical activity as illustrated in Fig. 1, which has been experimentally validated in the microwave spectrum. The proposed chiral torus knot represents the most optically active meta-molecule reported to date that is intrinsically isotropic to the incident polarization.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC