Optica Open
Browse

A Silicon Nitride Microring Modulator for High-Performance Photonic Integrated Circuits

Download (5.58 kB)
preprint
posted on 2023-06-14, 16:01 authored by Venkata Sai Praneeth Karempudi, Ishan G Thakkar, Jeffrey Todd Hastings
The use of the Silicon-on-Insulator (SOI) platform has been prominent for realizing CMOS-compatible, high-performance photonic integrated circuits (PICs). But in recent years, the silicon-nitride-on-silicon-dioxide (SiN-on-SiO$_2$) platform has garnered increasing interest as an alternative, because of its several beneficial properties over the SOI platform, such as low optical losses, high thermo-optic stability, broader wavelength transparency range, and high tolerance to fabrication-process variations. However, SiN-on-SiO$_2$ based active devices, such as modulators, are scarce and lack in desired performance due to the absence of free-carrier-based activity in the SiN material and the complexity of integrating other active materials with SiN-on-SiO$_2$ platform. This shortcoming hinders the SiN-on-SiO$_2$ platform for realizing active PICs. To address this shortcoming, in this article, we demonstrate a SiN-on-SiO$_2$ microring resonator (MRR) based active modulator. Our designed MRR modulator employs an Indium-Tin-Oxide (ITO)-SiO$_2$-ITO thin-film stack as the active upper cladding and leverages the free-carrier assisted, high-amplitude refractive index change in the ITO films to affect a large electro-refractive optical modulation in the device. Based on the electrostatic, transient, and finite difference time domain (FDTD) simulations, conducted using photonics foundry-validated tools, we show that our modulator achieves 450 pm/V resonance modulation efficiency, $\sim$46.2 GHz 3-dB modulation bandwidth, 18 nm free-spectral range (FSR), 0.24 dB insertion loss, and 8.2 dB extinction ratio for optical on-off-keying (OOK) modulation at 30 Gb/s.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC