Optica Open
Browse
arXiv.svg (5.58 kB)

A Spin-Optical Nano Device

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:41 authored by Enno Krauss, Gary Razinskas, Dominik Köck, Swen Grossmann, Bert Hecht
The photon spin is an important resource for quantum information processing as is the electron spin in spintronics. However, for subwavelength confined optical excitations, polarization as a global property of a mode cannot be defined. Here, we show that any polarization state of a plane-wave photon can reversibly be mapped to a pseudo-spin embodied by the two fundamental modes of a subwavelength plasmonic two-wire transmission line. We design a device in which this pseudo-spin evolves in a well-defined fashion throughout the device reminiscent of the evolution of photon polarization in a birefringent medium and the behaviour of electron spins in the channel of a spin field-effect transistor. The significance of this pseudo-spin is enriched by the fact that it is subject to spin-orbit locking. Combined with optically active materials to exert external control over the pseudo-spin precession, our findings could enable spin-optical transistors, i.e. the routing and processing of quantum information with light on a subwavelength scale.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC