A coherent coupling among different energy photons provided by nonlinear optical interaction is regarded as a photonic version of the Rabi oscillation. Cavity enhancement of the nonlinearity reduces energy requirement significantly and pushes the scalability of the frequency-encoded photonic circuit based on the photonic Rabi oscillation. However, confinement of the photons in the cavity severely limits the number of interactable frequency modes. Here we demonstrate a wide-bandwidth and efficient photonic Rabi oscillation achieving full-cycle oscillation based on a cavity-enhanced nonlinear optical interaction with a monolithic integration. We also show its versatile manipulation beyond the frequency degree of freedom such as an all-optical control for polarizing photons with geometric phase. Our results will open up full control accessible to synthetic dimensional photonic systems over wide frequency modes as well as a large-scale photonic quantum information processing.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.