Optica Open
Browse
arXiv.svg (5.58 kB)

A deterministic source of indistinguishable photons in a cluster state

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:12 authored by Dan Cogan, Zu-En Su, Oded Kenneth, David Gershoni
Measurement-based quantum communication relies on the availability of highly entangled multi-photon cluster states. The inbuilt redundancy in the cluster allows communication between remote nodes using repeated local measurements, compensating for photon losses and probabilistic Bell-measurements. For feasible applications, the cluster generation should be fast, deterministic, and its photons - indistinguishable. We present a novel source based on a semiconductor quantum-dot device. The dot confines a heavy-hole, precessing in a finely tuned external weak magnetic field while periodically excited by a sequence of optical pulses. Consequently, the dot emits indistinguishable polarization-entangled photons, where the field strength optimizes the entanglement. We demonstrate Gigahertz rate deterministic generation of >90% indistinguishable photons in a cluster state with more than 10 photons characteristic entanglement-length.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC