Optica Open
Browse
arXiv.svg (5.58 kB)

A dimensionality and purity measure for high-dimensional entangled states

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:50 authored by Isaac Nape, Valeria Rodrıguez-Fajardo, Feng Zhu, Hsiao-Chih Huang, Jonathan Leach, Andrew Forbes
High-dimensional entangled states are promising candidates for increasing the security and encoding capacity of quantum systems. While it is possible to witness and set bounds for the entanglement, precisely quantifying the dimensionality and purity in a fast and accurate manner remains an open challenge. Here, we report an approach that simultaneously returns the dimensionality and purity of high-dimensional entangled states by simple projective measurements. We show that the outcome of a conditional measurement returns a visibility that scales monotonically with entanglement dimensionality and purity, allowing for quantitative measurements for general photonic quantum systems. We illustrate our method using transverse spatial modes of photons that carry orbital angular momentum and verify high-dimensional entanglement over a wide range of state purities. Our approach advances the high-dimensional tool box for characterising quantum states by providing a simple and direct dimensionality and purity measure, even for mixed entangled states.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC