posted on 2023-01-12, 14:32authored byJialin Chen, Xiao Lin, Mingyuan Chen, Tony Low, Hongsheng Chen, Siyuan Dai
Moire superlattices-twisted van der Waals (vdW) structures with small angles-are attracting increasing attention in condensed matter physics, due to important phenomena revealed therein, including unconventional superconductivity, correlated insulating states, and ferromagnetism. Moire superlattices are typically comprised of atomic layers of vdW materials where the exotic physics arises from the quantum electronic coupling between adjacent atomic layers. Recently, moire electronics has motivated their photonic counterparts. In addition to vdW materials, twisted photonic systems can also be comprised of metamaterials, metasurfaces, and photonic crystals, mediated by interlayer electromagnetic coupling instead. The interplay between short-ranged interlayer quantum and long-ranged electromagnetic coupling in twisted structures are expected to yield rich phenomena in nano-optics. This perspective reviews recent progress in twisted structures for nanophotonics and outlooks emerging topics, opportunities, fundamental challenges, and potential applications.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.