Optica Open
Browse
arXiv.svg (5.58 kB)

A photonic integrated circuit based erbium-doped amplifier

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:25 authored by Yang Liu, Zheru Qiu, Xinru Ji, Jijun He, Johann Riemensberger, Martin Hafermann, Rui Ning Wang, Junqiu Liu, Carsten Ronning, Tobias J. Kippenberg
Erbium-doped fiber amplifiers have revolutionized long-haul optical communications and laser technology. Erbium ions could equally provide a basis for efficient optical amplification in photonic integrated circuits. However, this approach has thus far remained impractical due to insufficient output power. Here, we demonstrate a photonic integrated circuit based erbium amplifier reaching 145 mW output power and more than 30 dB small-signal gain -- on par with commercial fiber amplifiers and beyond state-of-the-art III-V heterogeneously integrated semiconductor amplifiers. We achieve this by applying ion implantation to recently emerged ultralow-loss Si3N4 photonic integrated circuits with meter-scale-length waveguides. We utilize the device to increase by 100-fold the output power of soliton microcombs, required for low-noise photonic microwave generation or as a source for wavelength-division multiplexed optical communications. Endowing Si3N4 photonic integrated circuits with gain enables the miniaturization of a wide range of fiber-based devices such as high-pulse-energy femtosecond mode-locked lasers.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC