Optica Open
Browse

A plasmonic nanorod that walks on DNA origami

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:42 authored by Chao Zhou, Xiaoyang Duan, Na Liu
In nano-optics, a formidable challenge remains in precise transport of a single optical nano-object along a programmed and routed path toward a predefined destination. Molecular motors in living cells that can walk directionally along microtubules have been the inspiration for realizing artificial molecular walkers. Here we demonstrate an active plasmonic system, in which a plasmonic nanorod can execute directional, progressive and reverse nanoscale walking on two or three-dimensional DNA origami.Such a walker comprises an anisotropic gold nanorod as its body and discrete DNA strands as its feet. Specifically, our walker carries optical information and can in situ optically report its own walking directions and consecutive steps at nanometer accuracy, through dynamic coupling to a plasmonic stator immobilized along its walking track. Our concept will enable a variety of smart nanophotonic platforms for studying dynamic light-matter interaction, which requires controlled motion at the nanoscale well below the optical diffraction limit.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC