Optica Open
Browse

A self-starting bi-chromatic LiNbO3 soliton microcomb

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:47 authored by Yang HE, Qi-Fan Yang, Jingwei Ling, Rui Luo, Hanxiao Liang, Mingxiao Li, Boqiang Shen, Heming Wang, Kerry Vahala, Qiang Lin
For its many useful properties, including second and third-order optical nonlinearity as well as electro-optic control, lithium niobate is considered an important potential microcomb material. Here, a soliton microcomb is demonstrated in a monolithic high-Q lithium niobate resonator. Besides the demonstration of soliton mode locking, the photorefractive effect enables mode locking to self-start and soliton switching to occur bi-directionally. Second-harmonic generation of the soliton spectrum is also observed, an essential step for comb self-referencing. The Raman shock time constant of lithium niobate is also determined by measurement of soliton self-frequency-shift. Besides the considerable technical simplification provided by a self-starting soliton system, these demonstrations, together with the electro-optic and piezoelectric properties of lithium niobate, open the door to a multi-functional microcomb providing f-2f generation and fast electrical control of optical frequency and repetition rate, all of which are critical in applications including time keeping, frequency synthesis/division, spectroscopy and signal generation.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC