Optica Open
Browse

A universal simulating framework for quantum key distribution systems

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:58 authored by Guan-Jie Fan-Yuan, Wei Chen, Feng-Yu Lu, Zhen-Qiang Yin, Shuang Wang, Guang-Can Guo, Zheng-Fu Han
Quantum key distribution (QKD) provides a physical-based way to conciliate keys between remote users securely. Simulation is an essential method for designing and optimizing QKD systems. We develop a universal simulation framework based on quantum operator descriptions of photon signals and optical devices. The optical devices can be freely combined and driven by the photon excitation events, which make it appropriate for arbitrary QKD systems in principle. Our framework focuses on realistic characters of optical devices and system structures. The imperfections of the devices and the non-local properties of a quantum system are taken into account when modeling. We simulate the single-photon and Hong-Ou-Mandel (HOM) interference optical units, which are fundamental of QKD systems. The results using this event-driven framework agree well with the theoretical results, which indicate its feasibility for QKD.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC