Optica Open
Browse

Accurate localization microscopy by intrinsic aberration calibration

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:29 authored by Craig R. Copeland, Craig D. McGray, B. Robert Ilic, Jon Geist, Samuel M. Stavis
A standard paradigm of localization microscopy involves extension from two to three dimensions by engineering information into emitter images, and approximation of errors resulting from the field dependence of optical aberrations. We invert this standard paradigm, introducing the concept of fully exploiting the latent information of intrinsic aberrations by comprehensive calibration of an ordinary microscope, enabling accurate localization of single emitters in three dimensions throughout an ultrawide and deep field. To complete the extraction of spatial information from microscale bodies ranging from imaging substrates to microsystem technologies, we introduce a synergistic concept of the rigid transformation of the positions of multiple emitters in three dimensions, improving precision, testing accuracy, and yielding measurements in six degrees of freedom. Our study illuminates the challenge of aberration effects in localization microscopy, redefines the challenge as an opportunity for accurate, precise, and complete localization, and elucidates the performance and reliability of a complex microelectromechanical system.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC