Optica Open
Browse
- No file added yet -

Actively controlling the topological transition of dispersion based on electrically controllable metamaterials

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:25 authored by Zhiwei Guo, Haitao Jiang, Yong Sun, Yunhui Li, Hong Chen
Topological transition of the iso-frequency contour (IFC) from a closed ellipsoid to an open hyperboloid, will provide unique capabilities for controlling the propagation of light. However, the ability to actively tune these effects remains elusive and the related experimental observations are highly desirable. Here, tunable electric IFC in periodic structure which is composed of graphene/dielectric multilayers is investigated by tuning the chemical potential of graphene layer. Specially, we present the actively controlled transportation in two kinds of anisotropic zero-index media containing PEC/PMC impurities. At last, by adding variable capacitance diodes into two-dimensional transmission-line system, we present the experimental demonstration of the actively controlled magnetic topological transition of dispersion based on electrically controllable metamaterials. With the increase of voltage, we measure the different emission patterns from a point source inside the structure and observe the phase-transition process of IFCs. The realization of actively tuned topological transition will opens up a new avenue in the dynamical control of metamaterials.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC