Optica Open
Browse

Adaptive Optics control using Model-Based Reinforcement Learning

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:38 authored by Jalo Nousiainen, Chang Rajani, Markus Kasper, Tapio Helin
Reinforcement Learning (RL) presents a new approach for controlling Adaptive Optics (AO) systems for Astronomy. It promises to effectively cope with some aspects often hampering AO performance such as temporal delay or calibration errors. We formulate the AO control loop as a model-based RL problem (MBRL) and apply it in numerical simulations to a simple Shack-Hartmann Sensor (SHS) based AO system with 24 resolution elements across the aperture. The simulations show that MBRL controlled AO predicts the temporal evolution of turbulence and adjusts to mis-registration between deformable mirror and SHS which is a typical calibration issue in AO. The method learns continuously on timescales of some seconds and is therefore capable of automatically adjusting to changing conditions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC