Optica Open
Browse

All-optical quantum signal demultiplexer

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:21 authored by Yin-Hai Li, Wen-Tan Fang, Zhi-Yuan Zhou, Shi-Long Liu, Shi-Kai Liu, Zhao-Huai Xu, Chen Yang, Yan Li, Li-Xin Xu, Guang-Can Guo, Bao-Sen Shi
Dense wavelength division multiplexing (DWDM) is one of the most successful methods for enhancing data transmission rates in both classical and quantum communication networks. Although signal multiplexing and demultiplexing are equally important, traditional multiplexing and demultiplexing methods are based on passive devices such as arrayed waveguides and fiber Bragg cascade filters, which, although widely used in commercial devices, lack any active tuning ability. In this work, we propose a signal demultiplexing method based on sum frequency generation (SFG) with two significant features: first, any signal from the common communication channel can be demultiplexed to a single user by switching the pump wavelength; second, a cheap high-performance detector can be used for signal detection. These two features were demonstrated by demultiplexing multi-channel energy-time entanglement generated by a micro-cavity silicon chip. High interference visibilities over three channels after demultiplexing showed that entanglement was preserved and verified the high performance of the demultiplexer, which will find wide application in high-capacity quantum communication networks.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC