Optica Open
Browse
- No file added yet -

An apparatus for in-vacuum loading of nanoparticles into an optical trap

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:43 authored by Evan Weisman, Chethn Krishna Galla, Cris Montoya, Eduardo Alejandro, Jason Lim, Melanie Beck, George P. Winstone, Alexey Grinin, William Eom, Andrew A. Geraci
We describe the design, construction, and operation of an apparatus utilizing a piezoelectric transducer for in-vacuum loading of nanoparticles into an optical trap for use in levitated optomechanics experiments. In contrast to commonly used nebulizer-based trap-loading methods which generate aerosolized liquid droplets containing nanoparticles, the method produces dry aerosols of both spherical and high-aspect ratio particles ranging in size by approximately two orders of mangitude. The device has been shown to generate accelerations of order $10^7$ $g$, which is sufficient to overcome stiction forces between glass nanoparticles and a glass substrate for particles as small as $170$ nm diameter. Particles with sizes ranging from $170$ nm to $\sim 10$ $\mu$m have been successfully loaded into optical traps at pressures ranging from $1$ bar to $0.6$ mbar. We report the velocity distribution of the particles launched from the substrate and our results indicate promise for direct loading into ultra-high-vacuum with sufficient laser feedback cooling. This loading technique could be useful for the development of compact fieldable sensors based on optically levitated nanoparticles as well as matter-wave interference experiments with ultra-cold nano-objects which rely on multiple repeated free-fall measurements and thus require rapid trap re-loading in high vacuum conditions.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC