posted on 2023-01-12, 15:05authored byD. Jiao, G. Xu, J. Gao, X. Deng, J. Liu, Q. Zang, X. Zhang, R. Dong, T. Liu, S. Zhang
We report in detail the design process and performance of an auto-locking ultra-stable laser with sub-hertz linewidth at the first time. The laser frequency is automatically stabilized to an optical reference cavity with a home-made controller, which is based on a combination of digital circuit and analog circuit. The digital circuit is used for diagnosing and manipulating the state of the ultra-stable laser, and the analog circuit is used for demodulating the discriminate signal and servo control. A method of searching the transmission signal in the closed-loop state instead of the open-loop state is proposed to reduce the locking time and improve the reliable of the auto-locking ultra-stable laser. The median time of 16.6s is obtained after 157 times of relocking, and the probability of less than 20 s is more than 86%. The median linewidth of 1.08 Hz is obtained, and the fractional frequency instability is less than 3.4E-15 at integration time between 0.1 and 100 s. The performance of this system demonstrates that will be used as an important subsystem to transfer the optical clock signal.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.