Optica Open
Browse
arXiv.svg (5.58 kB)

An inverse-designed nanophotonic interface for excitons in atomically thin materials

Download (5.58 kB)
preprint
posted on 2023-08-30, 16:00 authored by Ryan J. Gelly, Alexander D. White, Giovanni Scuri, Xing Liao, Geun Ho Ahn, Bingchen Deng, Kenji Watanabe, Takashi Taniguchi, Jelena Vučković, Hongkun Park
Efficient nanophotonic devices are essential for applications in quantum networking, optical information processing, sensing, and nonlinear optics. Extensive research efforts have focused on integrating two-dimensional (2D) materials into photonic structures, but this integration is often limited by size and material quality. Here, we use hexagonal boron nitride (hBN), a benchmark choice for encapsulating atomically thin materials, as a waveguiding layer while simultaneously improving the optical quality of the embedded films. When combined with photonic inverse design, it becomes a complete nanophotonic platform to interface with optically active 2D materials. Grating couplers and low-loss waveguides provide optical interfacing and routing, tunable cavities provide a large exciton-photon coupling to transition metal dichalcogenides (TMD) monolayers through Purcell enhancement, and metasurfaces enable the efficient detection of TMD dark excitons. This work paves the way for advanced 2D-material nanophotonic structures for classical and quantum nonlinear optics.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC