Optica Open
Browse
- No file added yet -

An ultra-stable cryogenic sapphire cavity laser with an instability of $1.9\times10^{-16}$ based on a low vibration level cryostat

Download (5.58 kB)
preprint
posted on 2023-03-20, 16:01 authored by Leilei He, Jingxuan Zhang, Zhiyuan Wang, Jialu Chang, Qiyue Wu, Zehuang Lu, Jie Zhang
Cryogenic ultra-stable lasers have extremely low thermal noise limits and frequency drifts, but they are more seriously affected by vibration noise from cryostats. Main material candidates for cryogenic ultra-stable cavities include silicon and sapphire. Although sapphire has many excellent properties at low temperature, the development of sapphire-based cavities is less advanced than that of silicon-based. Using a homemade cryogenic sapphire cavity, we develop an ultra-stable laser source with a frequency instability of $1.9\times10^{-16}$. This is the best frequency instability level among similar systems using cryogenic sapphire cavities reported so far. Low vibration performance of the cryostat is demonstrated with a two-stage vibration isolation, and the vibration suppression is further improved by different mixing ratio of the gas-liquid helium. With this technique, vibrations at frequencies higher than tens of hertz are greatly suppressed.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC