Optica Open
Browse
arXiv.svg (5.58 kB)

Analysis of Metallic Spacetime Gratings using Lorentz Transformations

Download (5.58 kB)
preprint
posted on 2023-04-06, 16:01 authored by Antonio Alex-Amor, Carlos Molero, Mário G. Silveirinha
This paper presents an analytical framework for the study of scattering and diffraction phenomena in spacetime-modulated metallic gratings. Using a Lorentz transformation, it is shown that a particular class of spacetime-modulated gratings behave effectively as moving media. We take advantage of this property to derive a closed analytical solution for the wave scattering problem. In particular, using our formalism it is possible to avoid spacetime Floquet-Bloch expansions, as the solution of the problem in the original laboratory frame (grating parameters are periodic in space and time) is directly linked to a co-moving frame where the metallic grating is time-invariant (grating parameters are periodic only in space). In this way, we identify a fundamental connection between moving metallic gratings and spacetime-modulated metamaterials, and exploit this link to study the nonreciprocal response of the structure. Some limitations and difficulties of the alternative nonrelativistic Galilean approach are discussed and the benefits of the Lorentz approach are highlighted. Finally, some analytical results are presented in order to validate the formalism. The results include scenarios involving TM(p) and TE(s) normal and oblique incidence, even beyond the onset of the diffraction regime. Furthermore, we show how the synthetic Fresnel drag can tailor the Goos-H\"anchen effect and create a specular point shifted towards the direction of the synthetic motion, independent of the sign of the incidence angle.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC