posted on 2023-11-30, 17:20authored byDavid Ianetz, Jeremy Schiff
In a simple model of propagation of asymmetric Gaussian beams in nonlinear waveguides, described by a reduction to ordinary differential eqautions of generalized nonlinear Schrodinger equations (GNLSEs) with cubic-quintic (CQ) and saturable (SAT) nonlinearities and a graded-index profile, the beam widths exhibit two different types of beating behavior, with transitions between them. We present an analytic model to explain these phenomena, which originate in a 1:1 resonance in a 2 degree-of-freedom Hamiltonian system. We show how small oscillations near a fixed point close to 1:1 resonance in such a system can be approximated using an integrable Hamiltonian and, ultimately, by a single first order differential equation. In particular, the beating transitions can be located from coincidences of roots of a pair of quadratic equations, with coefficients determined (in a highly complex manner) by the internal parameters and initial conditions of the original system. The results of the analytic model agree with numerics of the original system over large parameter ranges, and allow new predictions that can be verified directly. In the CQ case we identify a band of beam energies for which there is only a single beating transition (as opposed to 0 or 2) as the eccentricity is increased. In the SAT case we explain the sudden (dis)appearance of beating transitions for certain values of the other parameters as the grade-index is changed.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.