posted on 2023-05-13, 16:01authored byDaniel Friedrich, Jin Qin, Benedikt Schurr, Tommaso Tufarelli, Heiko Groß, Bert Hecht
Room-temperature strong coupling of a single quantum emitter and a single resonant plasmonic mode is a key resource for quantum information processing and quantum sensing at ambient conditions. To beat dephasing, ultrafast energy transfer is achieved by coupling single emitters to a plasmonic nanoresonator with an extremely small mode volume and optimal spectral overlap. Typically, normal mode splittings in luminescence spectra of single-emitter strongly-coupled systems are provided as evidence for strong coupling and to obtain rough estimates of the light-matter coupling strength g. However, a complete anticrossing of a single emitter and a cavity mode as well as the characterization of the uncoupled constituents is usually hard to achieve. Here, we exploit the light-induced oxygen-dependent blue-shift of individual CdSe/ZnS semiconductor quantum dots to tune their transition energy across the resonance of a scanning plasmonic slit resonator after characterizing both single emitter and nano resonator in their uncoupled states. Our results provide clear proof of single-emitter strong light-matter coupling at ambient condition as well as a value for the Rabi splitting at zero detuning 100 meV, consistent with modeling, thereby opening the path towards plexitonic devices that exploit single-photon nonlinearities at ambient conditions.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.