Optica Open
Browse

Aperiodic photonics of elliptic curves

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:20 authored by Luca Dal Negro, Yuyao Chen, Fabrizio Sgrignuoli1
In this paper we propose a novel approach to aperiodic order in optical science and technology that leverages the intrinsic structural complexity of certain non-polynomial (hard) problems in number theory and cryptography for the engineering of optical media with novel transport and wave localization properties. In particular, we address structure-property relationships in a large number (900) of light scattering systems that physically manifest the distinctive aperiodic order of elliptic curves and the associated discrete logarithm problem over finite fields. Besides defining an extremely rich subject with profound connections to diverse mathematical areas, elliptic curves offer unprecedented opportunities to engineer light scattering phenomena in aperiodic environments beyond the limitations of traditional random media. Our theoretical analysis combines the interdisciplinary methods of point patterns spatial statistics with the rigorous Green's matrix solution of the multiple wave scattering problem for electric and magnetic dipoles and provides access to the spectral and light scattering properties of novel deterministic aperiodic structures with enhanced light-matter coupling for nanophotonics and metamaterials applications to imaging and spectroscopy.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC