Optica Open
Browse

Assessment of learning tomography using Mie theory

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:11 authored by JooWon Lim, Alexandre Goy, Morteza Hasani Shoreh, Michael Unser, Demetri Psaltis
In Optical diffraction tomography, the multiply scattered field is a nonlinear function of the refractive index of the object. The Rytov method is a linear approximation of the forward model, and is commonly used to reconstruct images. Recently, we introduced a reconstruction method based on the Beam Propagation Method (BPM) that takes the nonlinearity into account. We refer to this method as Learning Tomography (LT). In this paper, we carry out simulations in order to assess the performance of LT over the linear iterative method. Each algorithm has been rigorously assessed for spherical objects, with synthetic data generated using the Mie theory. By varying the RI contrast and the size of the objects, we show that the LT reconstruction is more accurate and robust than the reconstruction based on the linear model. In addition, we show that LT is able to correct distortion that is evident in Rytov approximation due to limitations in phase unwrapping. More importantly, the capacity of LT in handling multiple scattering problem are demonstrated by simulations of multiple cylinders using the Mie theory and confirmed by experimental results of two spheres.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC