Optica Open
Browse

Astigmatism-free 3D Optical Tweezer Control for Rapid Atom Rearrangement

Download (5.58 kB)
preprint
posted on 2025-10-15, 16:01 authored by Yue-Hui Lu, Nathan Song, Tai Xiang, Jacquelyn Ho, Tsai-Chen Lee, Zhenjie Yan, Dan M. Stamper-Kurn
Reconfigurable arrays of neutral atoms are a leading platform for quantum computing, quantum simulation, and quantum metrology. The most common method for atom reconfiguration using optical tweezers relies on frequency chirping of acousto-optic deflectors (AODs). However, chirp-induced acoustic lensing limits the speed of atom transport by deformation of the tweezer profile and warping of the tweezer trajectory. We use a three-dimensional acousto-optic deflector lens (3D-AODL) to mitigate both effects, a design predicted to halve current state-of-the-art long-range transport times. Additionally, we introduce fading-Shepard waveforms that bypass the finite AOD bandwidth and thus enable sustained axial displacement. We demonstrate unrestricted 3D motion within a cuboid volume of at least 200 $μ$m $\times$ 200 $μ$m $\times$ 136 $μ$m, with tweezer velocities exceeding 4.2 m/s. The ability to move optical tweezers along arbitrary trajectories in 3D should enable rapid in-plane and out-of-plane rearrangement of atoms in 2D or 3D tweezer arrays and optical lattices, as well as omnidirectional trajectories and dynamical engineering of optical potentials. This technology has the potential to advance quantum control and atom manipulation in current atom-array quantum computers, boosting clock rates and enabling rapid sorting in geometries scalable to millions of qubits.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC