Optica Open
Browse

Asymmetric Si-slot Coupler with Nonreciprocal Response Based on Graphene Saturable Absorption

Download (5.58 kB)
preprint
posted on 2023-01-11, 21:53 authored by Alexandros Pitilakis, Dimitrios Chatzidimitriou, Traianos V. Yioultsis, Emmanouil E. Kriezis
We present the study of a proof-of-concept integrated device that can be used as a nonlinear broadband isolator. The device is based on the asymmetric loading of a highly-confining silicon-slot photonic coupler with graphene layers, whose ultrafast and low-threshold saturable absorption can be exploited for nonreciprocal transmission between the cross-ports of the coupler. The structure is essentially a non-Hermitian system, whose exceptional points are briefly discussed. The nonlinear device is modeled with a coupled Schrodinger equation system whose validity is checked by full-vector finite element-based beam-propagation method simulations in CW. The numerically computed performance reveals a nonreciprocal intensity range (NRIR) in the vicinity of 100 mW peak power with a bandwidth spanning tens of nanometers, from CW down to ps-long pulses. Finally, the combination of saturable absorption and self-phase modulation (Kerr effect) in graphene is studied, indicating the existence of two NRIR with opposite directionality.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC