Optica Open
Browse

Atomic magnetometry using a metasurface polarizing beamsplitter in silicon on sapphire

Download (5.58 kB)
preprint
posted on 2024-04-04, 16:00 authored by Xuting Yang, Pritha Mukherjee, Minjeong Kim, Hongyan Mei, Chengyu Fang, Soyeon Choi, Yuhan Tong, Sarah Perlowski, David A. Czaplewski, Alan M. Dibos, Mikhail A. Kats, Jennifer T. Choy
We demonstrate atomic magnetometry using a metasurface polarizing beamsplitter fabricated on a silicon-on-sapphire (SOS) platform. The metasurface splits a beam that is near-resonant with the rubidium atoms (795 nm) into orthogonal linear polarizations, enabling measurement of magnetically sensitive circular birefringence in a rubidium vapor through balanced polarimetry. We incorporated the metasurface into an atomic magnetometer based on nonlinear magneto-optical rotation and measured sub-nanotesla sensitivity, which is limited by low-frequency technical noise and transmission loss through the metasurface. To our knowledge, this work represents the first demonstration of SOS nanophotonics for atom-based sensing and paves the way for highly integrated, miniaturized atomic sensors with enhanced sensitivity and portability.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC