Optica Open
Browse

Backaction suppression in levitated optomechanics using reflective boundaries

Download (5.58 kB)
preprint
posted on 2024-05-09, 16:00 authored by Rafał Gajewski, James Bateman
We show theoretically that the noise due to laser induced backaction acting on a small nanosphere levitated in a standing-wave trap can be considerably reduced by utilising a suitable reflective boundary. We examine the spherical mirror geometry as a case study of this backaction suppression effect, discussing the theoretical and experimental constraints. We study the effects of laser recoil directly, by analysing optical force fluctuations acting on a dipolar particle trapped at the centre of a spherical mirror. We also compute the corresponding measurement imprecision in an interferometric, shot-noise-limited position measurement, using the formalism of Fisher information flow. Our results show that the standing-wave trapping field is necessary for backaction suppression in three dimensions, and they satisfy the Heisenberg limit of detection.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC