Optica Open
Browse

Braid Protected Topological Band Structures with Unpaired Exceptional Points

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:15 authored by J. Lukas K. König, Kang Yang, Jan Carl Budich, Emil J. Bergholtz
We demonstrate the existence of topologically stable unpaired exceptional points (EPs), and construct simple non-Hermitian (NH) tight-binding models exemplifying such remarkable nodal phases. While Fermion doubling, i.e. the necessity of compensating the topological charge of a stable nodal point by an anti-dote, rules out a direct counterpart of our findings in the realm of Hermitian semimetals, here we derive how non-commuting braids of complex energy levels may stabilize unpaired EPs. Drawing on this insight, we reveal the occurrence of a single, unpaired EP, manifested as a non-Abelian monopole in the Brillouin zone of a minimal three-band model. This third-order degeneracy cannot be fully gapped by any local perturbation. Instead, it may split into simpler (second-order) degeneracies that can only gap out by pairwise annihilation after having moved around inequivalent large circles of the Brillouin zone. Our results imply the incompleteness of a topological classification based on winding numbers, due to non-Abelian representations of the braid group intertwining three or more complex energy levels.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC