Optica Open
Browse

Breaking Anti-$\mathcal{PT}$ Symmetry by Spinning a Resonator

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:33 authored by Huilai Zhang, Ran Huang, Sheng-Dian Zhang, Ying Li, Cheng-Wei Qiu, Franco Nori, Hui Jing
Non-Hermitian systems, with symmetric or antisymmetric Hamiltonians under the parity-time ($\mathcal{PT}$) operations, can have entirely real eigenvalues. This fact has led to surprising discoveries such as loss-induced lasing and topological energy transfer. A merit of anti-$\mathcal{PT}$ systems is free of gain, but in recent efforts on making anti-$\mathcal{PT}$ devices, nonlinearity is still required. Here, counterintuitively, we show how to achieve anti-$\mathcal{PT}$ symmetry and its spontaneous breaking in a linear device by spinning a lossy resonator. Compared with a Hermitian spinning device, significantly enhanced optical isolation and ultrasensitive nanoparticle sensing are achievable in the anti-$\mathcal{PT}$-broken phase. In a broader view, our work provides a new tool to study anti-$\mathcal{PT}$ physics, with such a wide range of applications as anti-$\mathcal{PT}$ lasers, anti-$\mathcal{PT}$ gyroscopes, and anti-$\mathcal{PT}$ topological photonics or optomechanics.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC