Version 2 2023-06-08, 12:49Version 2 2023-06-08, 12:49
Version 1 2023-01-12, 14:18Version 1 2023-01-12, 14:18
preprint
posted on 2023-06-08, 12:49authored byHaowen Shu, Lin Chang, Yuansheng Tao, Bitao Shen, Weiqiang Xie, Ming Jin, Andrew Netherton, Zihan Tao, Xuguang Zhang, Ruixuan Chen, Bowen Bai, Jun Qin, Shaohua Yu, Xingjun Wang, John E. Bowers
Microcombs have sparked a surge of applications over the last decade, ranging from optical communications to metrology. Despite their diverse deployment, most microcomb-based systems rely on a tremendous amount of bulk equipment to fulfill their desired functions, which is rather complicated, expensive and power-consuming. On the other hand, foundry-based silicon photonics (SiPh) has had remarkable success in providing versatile functionality in a scalable and low-cost manner, but its available chip-based light sources lack the capacity for parallelization, which limits the scope of SiPh applications. Here, we bridge these two technologies by using a power-efficient and operationally-simple AlGaAs on insulator microcomb source to drive CMOS SiPh engines. We present two important chip-scale photonic systems for optical data transmissions and microwave photonics respectively: The first microcomb-based integrated photonic data link is demonstrated, based on a pulse-amplitude 4-level modulation scheme with 2 Tbps aggregate rate, and a highly reconfigurable microwave photonic filter with unprecedented integration level is constructed, using a time stretch scheme. Such synergy of microcomb and SiPh integrated components is an essential step towards the next generation of fully integrated photonic systems.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.