posted on 2023-11-30, 18:54authored byMasoud Alahbakhshi, Aditya Mishra, Ross Haroldson, Arthur Ishteev, Jiyoung Moon, Qing Gu, Jason D. Slinker, Anvar A. Zakhidov
Perovskite light-emitting diodes (PeLEDs) have drawn considerable attention for their favorable optoelectronic properties. Perovskite light-emitting electrochemical cells (PeLECs) _ devices that utilize mobile ions _ have recently been reported but have yet to reach the performance of the best PeLEDs. We leveraged a poly(ethylene oxide) electrolyte and lithium dopant in CsPbBr3 thin films to produce PeLECs of improved brightness and efficiency. In particular, we found that a single layer PeLEC from CsPbBr3:PEO:LiPF6 with 0.5% wt. LiPF6 produced highly efficient (22 cd/A) and bright (~15000 cd/m2) electroluminescence. To understand this improved performance among PeLECs, we characterized these perovskite thin films with photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). These studies revealed that this optimal LiPF6 concentration improves electrical double layer formation, reduces the occurrence of voids, charge traps, and pinholes, and increases grain size and packing density.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.