Optica Open
Browse
- No file added yet -

Bright electrically controllable quantum-dot-molecule devices fabricated by in-situ electron-beam lithography

Download (5.58 kB)
Version 2 2023-06-08, 12:42
Version 1 2023-01-11, 21:45
preprint
posted on 2023-06-08, 12:42 authored by Johannes Schall, Marielle Deconinck, Nikolai Bart, Matthias Florian, Martin von Helversen, Christian Dangel, Ronny Schmidt, Lucas Bremer, Frederik Bopp, Isabell Hüllen, Christopher Gies, Dirk Reuter, Andreas D. Wieck, Sven Rodt, Jonathan J. Finley, Frank Jahnke, Arne Ludwig, Stephan Reitzenstein
Self-organized semiconductor quantum dots represent almost ideal two-level systems, which have strong potential to applications in photonic quantum technologies. For instance, they can act as emitters in close-to-ideal quantum light sources. Coupled quantum dot systems with significantly increased functionality are potentially of even stronger interest since they can be used to host ultra-stable singlet-triplet spin qubits for efficient spin-photon interfaces and for a deterministic photonic 2D cluster-state generation. We realize an advanced quantum dot molecule (QDM) device and demonstrate excellent optical properties. The device includes electrically controllable QDMs based on stacked quantum dots in a pin-diode structure. The QDMs are deterministically integrated into a photonic structure with a circular Bragg grating using in-situ electron beam lithography. We measure a photon extraction efficiency of up to (24$\pm$4)% in good agreement with numerical simulations. The coupling character of the QDMs is clearly demonstrated by bias voltage dependent spectroscopy that also controls the orbital couplings of the QDMs and their charge state in quantitative agreement with theory. The QDM devices show excellent single-photon emission properties with a multi-photon suppression of $g^{(2)}(0) = (3.9 \pm 0.5) \cdot 10^{-3}$. These metrics make the developed QDM devices attractive building blocks for use in future photonic quantum networks using advanced nanophotonic hardware.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC