Optica Open
Browse
arXiv.svg (5.58 kB)

Broadband Entangled-Photon Pair Generation with Integrated Photonics: Guidelines and A Materials Comparison

Download (5.58 kB)
preprint
posted on 2024-07-10, 16:00 authored by Liao Duan, Trevor J. Steiner, Paolo Pintus, Lillian Thiel, Joshua E. Castro, John E. Bowers, Galan Moody
Correlated photon-pair sources are key components for quantum computing, networking, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate entanglement with sub-100 microwatt power at telecom wavelengths. Many quantum systems operate in the visible or near-infrared ranges, necessitating broadband visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation. This study evaluates broadband entanglement generation through spontaneous four-wave mixing in various nonlinear integrated photonic materials, including silicon nitride, lithium niobate, aluminum gallium arsenide, indium gallium phosphide, and gallium nitride. We demonstrate how geometric dispersion engineering facilitates phase-matching for each platform and reveals unexpected results, such as robust designs to fabrication variations and a Type-1 cross-polarized phase-matching condition for III-V materials that expands the operational bandwidth. With experimentally attainable parameters, integrated photonic microresonators with optimized designs can achieve pair generation rates greater than ~1 THz/mW$^2$.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC