Optica Open
Browse

Broadband coherent Raman spectroscopy based on single-pulse spectral-domain ghost imaging

Download (5.58 kB)
preprint
posted on 2025-08-12, 04:11 authored by Jing Hu, Tianjian Lv, Zhaoyang Wen, Wending Huang, Ming Yan, Heping Zeng
Broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy plays a vital role in chemical sensing and label-free vibrational imaging, yet conventional methods suffer from limited acquisition speeds and complex detection schemes. Here, we demonstrate high-speed broadband CARS enabled by nonlinear spectral ghost imaging combined with time-stretch dispersive Fourier-transform spectroscopy (TS-DFT). We exploit modulation instability to generate a stochastic supercontinuum as the Stokes source and a synchronized narrowband pulse as the pump. Reference Stokes spectra are captured at 60.5 MHz via TS-DFT, while anti-Stokes signals are detected using a single non-spectrally resolving photodetector. Correlating these signals enables broadband CARS spectral reconstruction across the fingerprint (600-1600 cm-1) and C-H stretching (2600-3400 cm-1) regions with 13 cm-1 resolution and microsecond-scale acquisition times. Our method enables robust signal recovery without the need for spectral resolution in the detection path, facilitating measurements in complex biological and chemical environments.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC