Optica Open
Browse

Broadband transparent Huygens' spaceplates

Download (5.58 kB)
preprint
posted on 2024-03-09, 17:00 authored by Francisco J. Díaz-Fernández, Luis Manuel Máñez-Espina, Ana Díaz-Rubio, Viktar Asadchy
Spaceplates have emerged in the context of nonlocal metasurfaces, enabling the compression of optical systems by minimizing the required empty space between their components. In this work, we design and analyze spaceplates that support resonances with opposite symmetries, operating under the so-called Huygens' condition. Using the temporal coupled-mode theory, we demonstrate that the spatial compression provided by Huygens' spaceplates is twice that of conventional single-resonance counterparts. Additionally, they can support broader operational bandwidths and numerical apertures, facilitating the reduction of chromatic aberrations. Moreover, Huygens' spaceplates maintain nearly full transparency over a wide frequency and angular range, allowing their straightforward cascading for multi-frequency broadband operation. Finally, we propose a physical implementation of a Huygens' spaceplate for optical frequencies based on a photonic crystal slab geometry.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC