Optica Open
Browse
arXiv.svg (5.58 kB)

Can amplified spontaneous emission produce intense laser guide stars for adaptive optics?

Download (5.58 kB)
preprint
posted on 2023-11-30, 21:15 authored by P. Hickson, J. Hellemeier, R. Yang
Adaptive optics (AO) is a key technology for ground-based optical and infrared astronomy, providing high angular resolution and sensitivity. AO systems employing laser guide stars (LGS) can achieve high sky coverage, but their performance is limited by LGS return flux. We examine the potential of two new approaches that might produce high-intensity atmospheric laser beacons. Amplified spontaneous emission could potentially boost the intensity of beacons produced by conventional resonant excitation of atomic or molecular species in the upper atmosphere. This requires the production of a population inversion in an electronic transition that is optically-thick to stimulated emission. Potential excitation mechanisms include continuous wave pumping, pulsed excitation and plasma generation. Alternatively, a high-power femtosecond pulsed laser could produce a white-light supercontinuum high in the atmosphere. The broad-band emission from such a source could also facilitate the sensing of the tilt component of atmospheric turbulence.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC