Optica Open
Browse

Carrier-envelope-phase and helicity control of electron vortices in photodetachment

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:35 authored by M. M. Majczak, F. Cajiao Vélez, J. Z. Kamiński, K. Krajewska
Formation of electron vortices and momentum spirals in photodetachment of the H$^-$ anion driven by isolated ultrashort laser pulses of circular polarization or by pairs of such pulses (of either corotating or counterrotating polarizations) are analyzed under the scope of the strong-field approximation. It is demonstrated that the carrier-envelope phase (CEP) and helicity of each individual pulse can be used to actively manipulate and control the vortical pattern in the probability amplitude of photodetachment. Specifically, the two-dimensional mappings of probability amplitude can be rotated in the polarization plane with changing the CEP of the driving pulse (or two corotating pulses); thus, offering a new tool of field characterization. Furthermore, it is shown that the formation of spirals or annihilation of vortices relates directly to the time-reversal symmetry of the laser field, which is realized by a pair of pulses with opposite helicities and CEPs.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC