Optica Open
2023_Bruschini_Microlenses_v4-3-1_arXiv-Final3-corr.pdf (3.29 MB)

Challenges and Prospects for Multi-chip Microlens Imprints on front-side illuminated SPAD Imagers

Download (3.29 MB)
Version 2 2023-02-22, 14:22
Version 1 2023-02-17, 14:01
posted on 2023-02-22, 14:22 authored by Claudio Bruschini, IVAN ANTOLOVIC, Frédéric Zanella, Arin Ulku, Scott Lindner, Alexander Kalyanov, Tommaso Milanese, Ermanno Bernasconi, Vladimir Pesic, Edoardo Charbon
The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ~10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays. Replications were successfully carried out for the first time at wafer reticle level on different designs in the same technology and on single large SPAD arrays with very thin residual layers (~10 µm), as needed for better efficiency at higher numerical aperture (NA > 0.25). In general, concentration factors within 15-20% of the theoretical maximum were obtained for the smaller arrays achieving an effective fill factor of 75.6-83.2%. A concentration factor up to 4.2 was measured on large arrays with a pitch of 16.38 m and a native fill factor of 10.5%, whereas improved simulation tools could give a better estimate of the actual concentration factor. Spectral measurements were also carried out, resulting in good and uniform transmission in the visible and NIR.


Funder Name

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (20QT21_187716,200021_166289); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (13916)

Preprint ID