Optica Open
Browse
arXiv.svg (5.58 kB)

Chaotic mode-competition dynamics in a multimode semiconductor laser with optical feedback and injection

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:17 authored by Ryugo Iwami, Kazutaka Kanno, Atsushi Uchida
Photonic computing is attracting increasing interest to accelerate information processing in machine learning applications. The mode-competition dynamics of multimode semiconductor lasers is useful for solving the multi-armed bandit problem in reinforcement learning for computing applications. In this study, we numerically evaluate the chaotic mode-competition dynamics in a multimode semiconductor laser with optical feedback and injection. We observe the chaotic mode-competition dynamics among the longitudinal modes and control them by injecting an external optical signal into one of the longitudinal modes. We define the dominant mode as the mode with the maximum intensity; the dominant-mode ratio for the injected mode increases as the optical injection strength increases. We find that the characteristics of the dominant mode ratio in terms of the optical injection strength are different among the modes owing to the different optical feedback phases. We propose a control technique for the characteristics of the dominant mode ratio by precisely tuning the initial optical frequency detuning between the optical injection signal and injected mode. We also evaluate the relationship between the region for the large dominant mode ratio and injection locking range. The region for the large dominant mode ratio does not correspond to the injection-locking range. This discrepancy results from the complex mode-competition dynamics in multimode semiconductor lasers with both optical feedback and injection. This control technique of chaotic mode-competition dynamics in multimode lasers is promising for applications in reinforcement learning and reservoir computing as photonic artificial intelligence.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC