Optica Open
Browse

Characterization of resonator using confocal laser scanning microscopy and its application in air density sensing

Download (5.58 kB)
preprint
posted on 2024-09-11, 12:56 authored by Ayla Hazrathosseini, Mohit Khurana, Lanyin Luo, Zhenhuan Yi, Alexei Sokolov, Philip R. Hemmer, Marlan O. Scully
We present the characterization of the photonic waveguide resonator using confocal laser scanning microscopy imaging method. Free space TEM$_{00}$ laser mode is coupled into quasi-TE$_{0}$ waveguide mode using confocal microscopy via a diffractive grating coupler and vice versa. Our work includes the design, fabrication, and experimental characterization of a silicon nitride racetrack-shaped resonator of length ~ 165 um. We illustrate clear evidence of resonance excitation from the confocal microscope image and demonstrate loaded Q-factor and finesse ~ 8.2 \pm 0.17 * 10^4 and ~ 180 \pm 3.5, respectively. We further demonstrate its one application in air density sensing by measuring the resonance wavelength shifts with variation in environment air pressure. Our work impacts spectroscopy, imaging, and sensing applications of single or ensemble atoms or molecules coupled to photonic devices. Additionally, our study highlights the potential of confocal microscopy for analyzing photonic components on large-scale integrated circuits, providing high-resolution imaging and spectral characterization.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC