Optica Open
Browse

Characterizing $d-$dimensional quantum channels by means of quantum process tomography

Download (5.58 kB)
preprint
posted on 2023-01-28, 17:00 authored by Juan José Miguel Varga, Lorena Rebón, Quimey Pears Stefano, Claudio Iemmi
In this work we propose a simple optical architecture, based on phase-only programmable spatial light modulators, in order to characterize general processes on photonic spatial quantum systems in a $d>2$ Hilbert space. We demonstrate the full reconstruction of typical noises affecting quantum computing, as amplitude shifts, phase shifts, and depolarizing channel in dimension $d=5$. We have also reconstructed simulated atmospheric turbulences affecting a free-space transmission of qudits in dimension $d=4$. In each case, quantum process tomography (QPT) was performed in order to obtain the matrix $\chi$ that fully describe the corresponding quantum channel, $\mathcal{E}$. Fidelities between the states experimentally obtained after go through the channel and the expected ones are above $97\%$.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC