Optica Open
Browse
- No file added yet -

Characterizing the Quantum Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology

Download (5.58 kB)
preprint
posted on 2023-11-30, 05:19 authored by Yung Kuo, Jack Li, Xavier Michalet, Alexey Chizhik, Noga Meir, Omri Bar-Elli, Emory Chan, Dan Oron, Joerg Enderlein, Shimon Weiss
We optimized the performance of quantum confined Stark effect QCSE based voltage nanosensors. A high throughput approach for single particle QCSE characterization was developed and utilized to screen a library of such nanosensors. Type II ZnSe CdS seeded nanorods were found to have the best performance among the different nanosensors evaluated in this work. The degree of correlation between intensity changes and spectral changes of the excitons emission under applied field was characterized. An upper limit for the temporal response of individual ZnSe CdS nanorods to voltage modulation was characterized by high throughput, high temporal resolution intensity measurements using a novel photon counting camera. The measured 3.5 us response time is limited by the voltage modulation electronics and represents about 30 times higher bandwidth than needed for recording an action potential in a neuron.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC