Optica Open
Browse

Chip-scale, CMOS-compatible, high energy passively Q-switched laser

Download (5.58 kB)
Version 2 2023-06-08, 13:03
Version 1 2023-03-04, 17:00
preprint
posted on 2023-06-08, 13:03 authored by Neetesh Singh, Jan Lorenzen, Milan Sinobad, Kai Wang, Andreas C. Liapis, Henry Frankis, Stefanie Haugg, Henry Francis, Jose Carreira, Michael Geiselmann, Mahmoud A. Gaafar, Tobias Herr, Jonathan D. B. Bradley, Zhipei Sun, Sonia M Garcia-Blanco, Franz X. Kartner
Chip-scale, high-energy optical pulse generation is becoming increasingly important as we expand activities into hard to reach areas such as space and deep ocean. Q-switching of the laser cavity is the best known technique for generating high-energy pulses, and typically such systems are in the realm of large bench-top solid-state lasers and fiber lasers, especially in the long wavelength range >1.8 um, thanks to their large energy storage capacity. However, in integrated photonics, the very property of tight mode confinement, that enables a small form factor, becomes an impediment to high energy application due to small optical mode cross-section. In this work, we demonstrate complementary metal-oxide-semiconductor (CMOS) compatible, rare-earth gain based large mode area (LMA) passively Q-switched laser in a compact footprint. We demonstrate high on-chip output pulse energy of >150 nJ in single transverse fundamental mode in the eye-safe window (1.9 um), with a slope efficiency ~ 40% in a footprint of ~9 mm2. The high energy pulse generation demonstrated in this work is comparable or in many cases exceeds Q-switched fiber lasers. This bodes well for field applications in medicine and space.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC