Optica Open
Browse
arXiv.svg (5.58 kB)

Chip-scale Simulations in a Quantum-correlated Synthetic Space

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:11 authored by Usman A. Javid, Raymond Lopez-Rios, Jingwei Ling, Austin Graf, Jeremy Staffa, Qiang Lin
An efficient simulator for quantum systems is one of the original goals for the efforts to develop a quantum computer [1]. In recent years, synthetic dimension in photonics [2] have emerged as a potentially powerful approach for simulation that is free from the constraint of geometric dimensionality. Here we demonstrate a quantum-correlated synthetic crystal, based upon a coherently-controlled broadband quantum frequency comb produced in a chip-scale dynamically modulated lithium niobate microresonator. The time-frequency entanglement inherent with the comb modes significantly extends the dimensionality of the synthetic space, creating a massive nearly 400 x 400 synthetic lattice with electrically-controlled tunability. With such a system, we are able to utilize the evolution of quantum correlations between entangled photons to perform a series of simulations, demonstrating quantum random walks, Bloch oscillations, and multi-level Rabi oscillations in the time and frequency correlation space. The device combines the simplicity of monolithic nanophotonic architecture, high dimensionality of a quantum-correlated synthetic space, and on-chip coherent control, which opens up an avenue towards chip-scale implementation of large-scale analog quantum simulation and computation [1,3,4] in the time-frequency domain.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC